GEOMETRY

UNIT 2 NOTE PACKET

Triangle Proofs

Date	Page	Торіс	Homework
9/19	2-3	Vocabulary	Study Vocab
9/20	4	Vocab Cont. and	No Homework
		Reflexive/Addition/Subtraction	
9/23	5-6	Drawing Conclusions from Vocab	Worksheet Drawing
			conclusions from Vocab
9/24	7	Mini Vocab Proofs	No Homework
9/25	8-9	QUIZ	Worksheet SSS,SAS,ASA
		Deciphering SAS, ASA, SSS, AAS, HL	and AAS Congruence
9/26	10	Proving Triangles Congruent	Geometry Practice
			GG28#1
9/27	11	Proving Triangles Congruent Continued	Proof Homework
			Worksheet
9/30	12-13	CPCTC	CPCTC Homework
			Worksheet
10/1	14	QUIZ	No Homework
		Proofs W/Parallel and 2 pairs of triangles	
10/2	Х	Proof Puzzles/ More Practice	Finish Proof Puzzles
10/3	15	Isosceles Triangle Proofs	No Homework
10/4	16	Overlapping Triangle Proofs	Geometry Practice Sheet
10/7	Х	QUIZ	Finish Review Sheet
		Review	
10/8	Х	Review	Ticket In / Study
10/9	X	TEST	No Homework

VOCABULARY UNIT 2

Term	Picture/ Example
Reflexive Property- a segment or an angle is	
congruent to itself.	
(a=a)	
Substitution Postulate- if two things are	
congruent to the same thing then they are	
congruent to each other.	
(If a=b and a=c then b=c)	
Addition Postulate- If you add the same thing	
to two equal things then the result is equal.	
(If a=b, then a+c=b+c)	
Subtraction Postulate- If you subtract the	
same thing from two equal things then the	
(If $z=b$, then z , $c=b$, c)	
<u>Segment Bisector-</u> A line that intersects a	
Angle Bisector- A line (or part of a line) that	
divides an angle into two congruent parts.	
Median A segment that goes from the vertex	
of a triangle to the MIDPOINT of the opposite	
side.	
Altitude- A segment that goes from the vertex	
of a triangle and is PERPENDICULAR to the	

Isosceles Triangle- A triangle with exactly two congruent sides and two congruent angles.	
<u>Right Triangle-</u> A triangle with a right angle.	
Equilateral Triangle- A triangle with three	
congruent sides and three congruent angles.	

USING REFLEXIVE/ADDITION/SUBTRACTION

Reflexive property: Use REFLEXIVE when you have one part (side or angle) that is part of two triangles...

Addition postulate:	
Example:	
If $AB\cong CD$ and $BE\cong DE$	E
Then:	В О
	A

Subtraction postulate: _____

If $AC\cong BD$

Show: AB≅CD

Drawing Conclusions From Vocabulary

Segment bisector:_____

Given: AC bisects BD at E

Conclusion:	
Reason:	

Using the same picture above Given: AC and BD bisect each other at E then

Conclusion(s):	
Reason:	

Angle bisector:_____

Conclusion:	 	
Reason:	 	

Midpoint:_____

А

Given: B is the midpoint of AC

В	С	Conclusion:
		Reason:

Median:_____

Given: Triangle ABC, with median CD

Conclusion:
Reason:

Altitude:_____

Given: triangle JOY with altitude OH

MINI VOCABULARY PROOFS

 Given: AM is the median in ΔABC Prove: BM≅MC

Given: AM is the Altitude in ∆ABC
Prove: ∠BMA≅∠CMA

 Given: NB and AM intersect at E Prove: AB≅AB and ∡NEA≅∡MEB

There are 5 ways to prove that triangles are congruent:

Name the additional part(s) that you would have to get congruent in order to prove that the triangles are congruent the way stated.

 $\triangle STU \cong \triangle VWX$ by SSS

 $\triangle ONE \cong \triangle OWT$ by ASA

Given: ∆ABC with AC≅BC
CD bisects <ACB

2.) Given: Isosceles triangle ABC with CA≅CB D is the midpoint of AB

 Given: Isosceles triangle ABC with CA≅CB CD is the Altitude to AB

1.)Given: BA bisects CD AC⊥CD BD⊥CD

2.) Given: BA≅DA

CA bisects $\angle BAD$ Prove: $\triangle CBA \cong \triangle CDA$ B B C

3.) Given: BC and AE bisect each other at D

#4:

Given: $\angle NLM \cong \angle LNO$ and $\angle OLN \cong \angle MNL$ Prove: $\angle M \cong \angle O$

#5

Given: $\overline{AC} \cong \overline{BC}$ and $\overline{AX} \cong \overline{BX}$ Prove: $\angle 1 \cong \angle 2$

Given: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ Prove: $\overline{XY} \cong \overline{ZW}$

PROOFS WITH PARALLEL LINES AND

PROVING MORE THAN 1 PAIR OF TRIANGLES CONGRUENT

If you are given that two lines are parallel then you should always look for Alternate Interior Angles.

Draw Alternate interior angles:

Example:

1.) Given: AE bisects BD

AB∥DE Prove: AC≅EC

2.) Given: ∡ABE≅ ∡CDEAB≅CDProve: AD≅CB

AX is a Median to BC

Prove: ∡BAX≅∡CAX

2.) Given: Triangle XRY is isosceles
PQ≅TS
∡Q≅∡S

Prove: QY \cong SX

1.) Given: BE≅CD

∡BEA≅ ∡CDA

Prove: $\measuredangle B \cong \measuredangle C$

2.) Given: $41 \cong 42$ DA \perp AB CB \perp AB AE \cong BF

Prove: DF≅CE

